Pietroski et al. (2009): two interpretation strategies for "most"

Cardinality-based strategy

 $most(A, B) \Leftrightarrow |S_{A \wedge B}| > 1/2 \cdot |A|$ $\Leftrightarrow |S_{A \wedge B}| > |S_{A \wedge \neg B}|$

- 1. Estimate the number of entities satisfying both predicates (*"red* 1. Successively match entities satisfying both predicates ("red squares") and the number satisfying one predicate but not the squares") uniquely with entities satisfying one predicate but not other (*"non-red squares"*). the other (*"non-red squares"*).
- 2. Compare these number estimates and check whether the former 2. The remaining entities are all of one type, so pick one and check is greater than the latter. whether it is of the first type ("red square").

x: entity, A and B: predicates (e.g., "square" and "red"), A(x) true iff x satisfies A, and $S_A = \{x : A(x)\}$: set of entities satisfying A.

Training examples

- Exactly two squares are yellow.
- ► Exactly no square is red.
- ► More than half the red shapes are squares.
- ► More than a third of the shapes are cyan.
- Less than half the shapes are green.
- Exactly all magenta shapes are squares.
- ► At most five shapes are magenta.
- ► At least one triangle is gray.

Increasingly balanced attribute ratios

GitHub projects & PDF versions

https://github.com/AlexKuhnle/ShapeWorld ShapeWorld: FiLM for ShapeWorld: https://github.com/AlexKuhnle/film Paper & poster PDF, plus related papers: https://www.cl.cam.ac.uk/~aok25/

Examples

The meaning of "most" for visual question answering models Alexander Kuhnle Ann Copestake

Department of Computer Science and Technology University of Cambridge {aok25,aac10}@cam.ac.uk

Pairing-based strategy

 $A \leftrightarrow B :\Leftrightarrow \forall x : A(x) \Leftrightarrow B(x) \Leftrightarrow |S_A| = |S_B|$ $most(A, B) \Leftrightarrow \exists S \subsetneq S_{A \land B} : S \leftrightarrow S_{A \land \neg B}$

"More than half the shapes are red shapes?"

0.9

0.8

Experimental setup: task, model, data, etc

Task: image caption agreement

- Model: FiLM (Perez et al. 2018)
- **Variants:** -pre indicates pretrained CNN module, -coll indicates shape collisions allowed
- **Training data:** 100k images with 5 captions per image
- **Training:** 100k iterations with batch size 64 (\sim 13 epochs)
- Validation data: 20k instances
- **Test data:** 48 configurations with 1024 instances each

Numbers: "zero" to "five"

than", "not"

Quantifiers: "no", "a/three quarter(s)", "a/two third(s)", "all" Modifiers: "less than", "at most", "exactly", "at least", "more

Training datasets: Q-full contains all quantifiers, Q-half contains only "more than half" and "less than half"

Test datasets: One contrasting attribute, close-to-balanced contrast attribute ratios, area- vs size-controlled, random/paired/partitioned positioning

Experimental results

train	mode	size-controlled								area-controlled							
		all	1:2	2:3	3:4	4:5	5:6	6:7	7:8	all	1:2	2:3	3:4	4:5	5:6	6:7	7:8
Q-full	random	92	100	99	97	94	91	88	85	93	100	99	97	93	91	86	82
	paired	93	99	99	96	93	90	88	82	93	99	99	96	91	87	84	80
	part.	89	100	99	92	90	81	77	72	89	99	98	92	88	82	78	72
Q-half	random	92	100	100	98	93	88	88	87	93	100	100	97	92	86	85	82
	paired	92	100	100	96	90	86	84	79	92	100	99	96	87	84	79	76
	part.	91	100	99	96	86	83	83	80	91	100	99	94	89	83	83	80

Weber fraction: performance for increasingly balanced ratios

(n+1)/n, with Weber fraction (75%) highlighted

Evaluation performance