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Multi-modal deep learning systems recently showed strong performance on the image captioning task
(Karpathy and Li, 2015). At the same time, however, some more detailed investigations cast doubt on the
quality of the results, or rather, whether the current evaluation practice is sufficient to test for true scene
and language understanding (Hodosh and Hockenmaier, 2016; Nguyen et al., 2015).

With the aim of analysing basic linguistic/symbolic capabilities of multi-modal systems, we propose
to move away from real-world photos with human-written captions, as well as the task setup of asking the
system to generate captions. Regarding the latter, we more closely follow the setup of the recently introduced
image question answering task (Antol et al., 2015) and take an image as a natural representation of the world
against which statements can be evaluated. In our experiments, a system is trained on pairs of images and
statements about them, together with corresponding values indicating the appropriateness of the proposition
given the image, while during test time previously unseen object/concept combinations of the same symbolic
structure as the train instances are presented. To do well on this task, it is hence crucial for the evaluated
system to learn to understand the underlying symbolic principle.

Instead of real-world data, we use automatically generated abstract micro-worlds, similar to other work
on formally testing the abilities of deep learning systems (Sorodoc et al., 2016; Joulin and Mikolov, 2015;
Bowman et al., 2015; Weston et al., 2015; Vinyals et al., 2015; Sukhbaatar et al., 2015). In doing so, we
avoid the problem of visually noisy or otherwise ambiguous instances, and are able to more exhaustively
cover the space of possible images and captions. Moreover, it enables us to control the data generation,
and so investigate the learning process in a network. For instance, quantifier learning can be analysed by
constructing instances specifically targeting interesting quantifier configurations (Pietroski et al., 2009).

Internally, the micro-worlds are explicit representations listing all world objects with their properties,
from which both the image and a caption is extracted. The objects are randomly sampled and, for now,
consist of coloured shapes. Below some single-shape worlds with example captions generated by our system:

red triangle
⇒ False

cyan rectangle
⇒ True

white ellipse
⇒ True

magenta circle
⇒ False

green pentagon
⇒ True

yellow cross
⇒ False

white circle
⇒ False

For caption generation we use the Dependency Minimal Recursion Semantics (DMRS) formalism (Copes-
take et al., 2016; Copestake, 2009) to represent the abstract semantic structure of a proposition. Every object
and property is annotated with its corresponding DMRS predicate(s), and the compositional framework of
DMRS enables us to construct a wide variety of possible sentences from a few general DMRS graph skeletons
on this basis. Below an example proposition with coloured compositional components:

“There is a blue circle which is to the left of a green star.”

DMRS graphs can be transformed to MRS structures, from which corresponding English sentences can
be generated with a bidirectional HPSG-grammar like the English Resource Grammar (Flickinger, 2000;
Flickinger et al., 2014) and a parser-generator like ACE (http://sweaglesw.org/linguistics/ace/).
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