How clever is the FiLM model, and how clever can it be? Huiyuan Xie Alexander Kuhnle Ann Copestake Department of Computer Science and Technology University of Cambridge $\{aok25,hx255,aac10\}$ @cam.ac.uk

ShapeWorld datasets

Existential: "There is a red square.", "A red shape is a square." **Single-shape:** same as above, with only one object present Logical: two existential statements connected by: and, or, if, if and only if **Numbers:** zero to five; with modifiers: less/more than, at most/least, exactly, not **Quantifiers:** with modifiers as above: no, half, all, a/two third(s), a/three quarter(s) **Relational:** left, right, above, below, closer, farther, darker, lighter, smaller, bigger, same/different shape/color

Performance per dataset of FiLM and baselines

Dataset	CNN-LSTM		CNN-LSTM-SA		FiLM	
(single-shape)					100.0	87.2
existential	100.0	81.1	100.0	99.7	100.0	99.9
logical	79.7	62.2	76.5	58.4	99.9	98.9
numbers	75.0	66.4	99.1	98.2	99.6	99.3
quantifiers	72.1	69.1	84.8	80.8	97.7	97.0
(simple-spatial)	81.4	64.8	81.9	57.7	85.1	61.3
relational					50.6	51.0
implicit-rel					52.9	53.2
superlatives					50.8	50.2

Simple-spatial: the first four spatial relations, with only two objects per scene

Relational-negation: relational plus negated relations

Implicit-relational: left, right, upper, lower, smaller, bigger, darker, lighter, closer, farther (of two target objects)

Superlatives: superlative forms of the above, of an arbitrary number of target objects **Relational-like:** any of the datasets relational, implicit-relational and superlatives

Example instances

Examples for visual scenes

Examples for true or false statements

- "There is a cyan square or a circle is green." • "At least two shapes are green."
- "More than half the pentagons are red."
- "A red cross is to the left of a yellow shape."
- o "The left circle is blue."
- "The lowermost yellow shape is a circle."

Learning from a broader set of instances

Learning bootstrapped by simpler instances

Performance on relational/-negation *or* existential+numbers (*with overlap*), *when augmented* with / pretrained on simple-spatial or existential instances, respectively.

Performance per dataset of the FiLM model trained on a broader set of instances, including existential, logical, numbers, quantifiers and various combinations of relational-like instances.

Datasets combining a broader variety of instance types can be successfully learned if the relative amount of *"difficult"* instances is small.

- Augmenting training data with "simpler" instances can help the learning of more "difficult" instances, but improvements are unstable.
- Pretraining on instances which are "easier" to learn before moving to more "complex" ones yields more robust improvements.

Additional findings

Pretrained ResNet does not perform well existential fixed

Overlapping objects can impede learning

▶ The learnability of such datasets is sensitive to how *"related"* or *"difficult"* the instances are.

Differences to findings for CLEVR

- Pretrained ResNet does not perform well.
- Overlapping objects can impede learning.
- Simple compositional generalization (simpler than CLEVR CoGenT) is learned perfectly.
- Relational statements are substantially more difficult to learn, at least in isolation.
- ▶ The presence of simpler instances likely benefits the learning of more complex ones.
- Performance on CLEVR does not transfer to all kinds of 'CLEVR-like' abstract data.

 \Rightarrow Monolithic benchmark datasets may conceal important insights into the capability of evaluated models to learn structurally different types of instances.

GitHub projects & PDF versions

ShapeWorld: https://github.com/AlexKuhnle/ShapeWorld FiLM for ShapeWorld: https://github.com/AlexKuhnle/film Paper & poster PDF, plus related papers: https://www.cl.cam.ac.uk/~aok25/

