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About the framework
- Originally developed by Michael Schaarschmidt, Kai Fricke and myself

- Introduction blog post: 11/07/2017

- Since mid-2018 developed by myself

- GitHub: https://github.com/tensorforce/tensorforce

- ~200 pull requests by ~50 contributors

-

https://github.com/tensorforce/tensorforce


Why build yet another
reinforcement learning library?



Existing frameworks
Example: OpenAI Baselines

Largely independent agent implementations
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Research frameworks vs practical requirements
- “Standardized” state/action space: 

single float-array state, int/float action

- Interaction in training episodes with 
terminal/goal state

- Agent reference implementations, may 
include environment-specific details

- Mix of Python and 
TensorFlow(/PyTorch)

- States/action space with multiple 
components, various types and shapes

- Continuous interaction, no “natural” 
termination of interaction

- (Re-)combination of techniques to suit 
characteristics of application 

- Single implementation platform



Modular component-based library design

Tensorforce: “TF Estimators for RL”



Modular component-based library design

No fundamental differences internally,
all a matter of modular configuration!

Tensorforce: “TF Estimators for RL”



Tensorforce: “TF Estimators for RL”
Usage example: DQN agent (configured manually, for illustration)



Key features of
Tensorforce
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Q-learning



RL timestep and dependencies
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RL timestep and dependencies
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RL timestep and dependencies

tt-1 t+1... ...

rewards
V(s)

Q(s,a)
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internal
action

internals[t-p]

states[t-p+1:t]

actions[t]

rewards[t:t+f]
states[t+f-p:t+f]

(actions[t+f])

internals[t+f-p-1]
Actual batch instance consists of:

states

internal 
state

(terminal, 
aborted?)

future horizon fpast horizon p
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Other framework features
Optimizers as graph assemblers:

- TensorFlow/Keras/PyTorch: based on loss-tensor/-function
- Tensorforce

- generic “updaters” with a range of potential inputs: loss, KL-divergence, source-vars, etc
- update modifiers: multi-step, update clipping, batch subsampling

Static vs dynamic hyperparameters:

- TensorFlow/PyTorch: seemingly only learning-rate
- Tensorforce:

- All dynamic parameters are of type Parameter: constant, decaying, piecewise, etc
- Parameters scheduled based on timestep/episode/update,... (loss?)
- Placeholder-with-default for straightforward experimentation
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TensorFlow as an implementation platform
- Static graph compilation great for verification and TF/Python separation

- However, problems have persisted with respect to:
- Nesting while and cond in combination with gradients and TensorBoard summaries
- Recently, almost every TF upgrade breaks one thing and/or fixes another

- TensorFlow 2.0: Exceptions are harder to interpret

- TensorFlow 2.1: Version upgrades still change/break basic things



User feedback
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- Full-on TensorFlow: computation graph can be extracted
- Focus on “core RL” performance, in particular reward estimation



Reasons for choosing Tensorforce

Limitations and areas for development
- No code digging: hard to modify/extend beyond what’s supported
- Modular structure: no single script, no SOTA reference implementations
- Full-on TensorFlow: incomprehensible exceptions
- No focus on sophisticated hardware management and distributed execution

- No code digging: easy to get started and obtain results
- Modular structure: clean API and extensive configurability
- Full-on TensorFlow: computation graph can be extracted
- Focus on “core RL” performance, in particular reward estimation



Applications



DeepCrawl: DRL-controlled game AI
(Alessandro Sestini, Università degli Studi di Firenze)



DeepCrawl: DRL-controlled game AI
(Alessandro Sestini, Università degli Studi di Firenze)

RL / Tensorforce takeaways:

- State space with multiple components
- Global and ego-centric views of map
- Categorical and continuous game state values

- Handling of discrete values
- Main motivation for auto-network

- Exploration also for imperfect behavior

- Deployment to C#

Paper: http://www.exag.org/papers/EXAG_2019_paper_1.pdf
GitHub: https://github.com/SestoAle/DeepCrawl

http://www.exag.org/papers/EXAG_2019_paper_1.pdf
https://github.com/SestoAle/DeepCrawl
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(Jean Rabault et al., University of Oslo)



Flow Control of the 2D Kármán Vortex Street
(Jean Rabault et al., University of Oslo)

RL / Tensorforce takeaways:

- Costly simulations using FEniCS
- Simple parallelized environment execution
- Speedup almost linear <= 60

- Importance of choosing the right 
characteristic timescales
- Agent vs simulation timestep rate
- Horizons and terminal

Papers: https://arxiv.org/abs/1808.07664  https://arxiv.org/abs/1906.10382
GitHub: https://github.com/jerabaul29/Cylinder2DFlowControlDRL

https://arxiv.org/abs/1808.07664
https://arxiv.org/abs/1906.10382
https://github.com/jerabaul29/Cylinder2DFlowControlDRL


Direct shape optimization through DRL
(Jonathan Viquerat et al., MINES ParisTech)



Direct shape optimization through DRL
(Jonathan Viquerat et al., MINES ParisTech)

RL / Tensorforce takeaways:

- Importance of state/action parametrization
- Unambiguous, normalized

- “Degenerate” 1-step RL
- Non-differentiable optimization

- Potential of reward shaping:
- Constraints via additional terms

Paper: https://arxiv.org/abs/1908.09885 

https://arxiv.org/abs/1908.09885


Autonomous order dispatching in the semiconductor industry
(KIT Institute of Production Science, Infineon)



Autonomous order dispatching in the semiconductor industry
(KIT Institute of Production Science, Infineon)

RL / Tensorforce takeaways:

- Agent embedded in simulation framework

- Multiple workers controlled by the same RL 
agent interacting simultaneously
- Different type of parallelized execution

- Masking of invalid actions

Paper: https://publikationen.bibliothek.kit.edu/1000091435 

https://publikationen.bibliothek.kit.edu/1000091435
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- Drones, autonomous driving
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Summary
Tensorforce: “TF Estimators for reinforcement learning”

- Easy-to-use framework for applied DRL

- Fully modular RL library design with extensive configurability

- TensorFlow as only implementation platform

- Vision: enable (non-ML) practitioners to apply DRL in any application



Thanks for your attention!

Questions?


