
Tensorforce:
building an applied reinforcement

learning framework using TensorFlow

Alexander Kuhnle

28th January 2020

Content
- Motivation

- Key features

- TensorFlow as implementation platform

- User feedback

- Applications

About the framework
- Originally developed by Michael Schaarschmidt, Kai Fricke and myself

- Introduction blog post: 11/07/2017

- Since mid-2018 developed by myself

- GitHub: https://github.com/tensorforce/tensorforce

- ~200 pull requests by ~50 contributors

-

https://github.com/tensorforce/tensorforce

Why build yet another
reinforcement learning library?

Existing frameworks
Example: OpenAI Baselines

Largely independent agent implementations

Research frameworks vs practical requirements
- “Standardized” state/action space:

single float-array state, int/float action
- States/action space with multiple

components, various types and shapes

Research frameworks vs practical requirements
- “Standardized” state/action space:

single float-array state, int/float action
- States/action space with multiple

components, various types and shapes

Research frameworks vs practical requirements
- “Standardized” state/action space:

single float-array state, int/float action

- Interaction in training episodes with
terminal/goal state

- States/action space with multiple
components, various types and shapes

- Continuous interaction, no “natural”
termination of interaction

Research frameworks vs practical requirements
- “Standardized” state/action space:

single float-array state, int/float action

- Interaction in training episodes with
terminal/goal state

- States/action space with multiple
components, various types and shapes

- Continuous interaction, no “natural”
termination of interaction

Research frameworks vs practical requirements
- “Standardized” state/action space:

single float-array state, int/float action

- Interaction in training episodes with
terminal/goal state

- Agent reference implementations, may
include environment-specific details

- States/action space with multiple
components, various types and shapes

- Continuous interaction, no “natural”
termination of interaction

- (Re-)combination of techniques to suit
characteristics of application

Research frameworks vs practical requirements
- “Standardized” state/action space:

single float-array state, int/float action

- Interaction in training episodes with
terminal/goal state

- Agent reference implementations, may
include environment-specific details

- Mix of Python and
TensorFlow(/PyTorch)

- States/action space with multiple
components, various types and shapes

- Continuous interaction, no “natural”
termination of interaction

- (Re-)combination of techniques to suit
characteristics of application

- Single implementation platform

Modular component-based library design

Tensorforce: “TF Estimators for RL”

Modular component-based library design

No fundamental differences internally,
all a matter of modular configuration!

Tensorforce: “TF Estimators for RL”

Tensorforce: “TF Estimators for RL”
Usage example: DQN agent (configured manually, for illustration)

Key features of
Tensorforce

Reinforcement learning architecture
en

vi
ro

nm
en

t

agent

Reinforcement learning architecture
en

vi
ro

nm
en

t policy

agent

state

action

ac
t()

Reinforcement learning architecture
en

vi
ro

nm
en

t policy

agent

state

action

reward

ac
t()

ob
se

rv
e(

)

Reinforcement learning architecture
en

vi
ro

nm
en

t policy

“long-term”
memory

“short-term”
buffer

optimization

agent

state

action

reward

store

update

sample
batch

ac
t()

ob
se

rv
e(

)

Reinforcement learning architecture
en

vi
ro

nm
en

t policy

“long-term”
memory

“short-term”
buffer

optimization

reward estimation

agent

state

action

reward

store

update

sample
batch

ac
t()

ob
se

rv
e(

)

Reinforcement learning architecture
en

vi
ro

nm
en

t policy

“long-term”
memory

“short-term”
buffer

optimization

reward estimation
auxiliary
losses

critic/
target

curios-
Ity, etc

agent

state

action

reward

store

update

sample
batch

ac
t()

ob
se

rv
e(

)

Reinforcement learning architecture
en

vi
ro

nm
en

t policy

“long-term”
memory

“short-term”
buffer

optimization

reward estimation
auxiliary
losses

critic/
target

curios-
Ity, etc

agent

state

action

reward

store

update

sample
batch

ac
t()

ob
se

rv
e(

) up
da

te
()

RL timestep and dependencies

tt-1 t+1... ...

RL timestep and dependencies

tt-1 t+1... ...

rewardstate
action

RL timestep and dependencies

tt-1 t+1... ...

reward
next state

state
action

RL timestep and dependencies

tt-1 t+1... ...

reward
next state

state
action

max Q(s,a)

Q-learning

RL timestep and dependencies

tt-1 t+1... ...

rewards
action

state

Policy gradient

RL timestep and dependencies

tt-1 t+1... ...

rewards
V(s)

Q(s,a)
action

state

future horizon

RL timestep and dependencies

tt-1 t+1... ...

rewards
V(s)

Q(s,a)
states

internal
state action

future horizonpast horizon

RL timestep and dependencies

tt-1 t+1... ...

rewards
V(s)

Q(s,a)

states

internal
state action

internal
state

states

future horizonpast horizon

RL timestep and dependencies

(terminal,
aborted?)

tt-1 t+1... ...

rewards
V(s)

Q(s,a)

states

internal
state action

internal
state

states

future horizonpast horizon

RL timestep and dependencies

tt-1 t+1... ...

rewards
V(s)

Q(s,a)

states

internal
action

internals[t-p]

states[t-p+1:t]

actions[t]

rewards[t:t+f]
states[t+f-p:t+f]

(actions[t+f])

internals[t+f-p-1]
Actual batch instance consists of:

states

internal
state

(terminal,
aborted?)

future horizon fpast horizon p

Other framework features
Optimizers as graph assemblers:

- TensorFlow 1.X: based on loss-tensor
- Keras/PyTorch: based on loss-function

Other framework features
Optimizers as graph assemblers:

- TensorFlow/Keras/PyTorch: based on loss-tensor/-function
- Tensorforce

- generic “updaters” with a range of potential inputs: loss, KL-divergence, source-vars, etc
- update modifiers: multi-step, update clipping, batch subsampling

Other framework features
Optimizers as graph assemblers:

- TensorFlow/Keras/PyTorch: based on loss-tensor/-function
- Tensorforce

- generic “updaters” with a range of potential inputs: loss, KL-divergence, source-vars, etc
- update modifiers: multi-step, update clipping, batch subsampling

Static vs dynamic hyperparameters:

- TensorFlow/PyTorch: seemingly only learning-rate
tf.keras.optimizers.schedules.LearningRateSchedule

torch.optim.lr_scheduler.*

Other framework features
Optimizers as graph assemblers:

- TensorFlow/Keras/PyTorch: based on loss-tensor/-function
- Tensorforce

- generic “updaters” with a range of potential inputs: loss, KL-divergence, source-vars, etc
- update modifiers: multi-step, update clipping, batch subsampling

Static vs dynamic hyperparameters:

- TensorFlow/PyTorch: seemingly only learning-rate
- Tensorforce:

- All dynamic parameters are of type Parameter: constant, decaying, piecewise, etc
- Parameters scheduled based on timestep/episode/update,... (loss?)
- Placeholder-with-default for straightforward experimentation

TensorFlow as an
implementation platform

TensorFlow as an implementation platform
- Static graph compilation great for verification and TF/Python separation

TensorFlow as an implementation platform
- Static graph compilation great for verification and TF/Python separation

- However, problems have persisted with respect to:
- Nesting while and cond in combination with gradients and TensorBoard summaries
- Recently, almost every TF upgrade breaks one thing and/or fixes another

TensorFlow as an implementation platform
- Static graph compilation great for verification and TF/Python separation

- However, problems have persisted with respect to:
- Nesting while and cond in combination with gradients and TensorBoard summaries
- Recently, almost every TF upgrade breaks one thing and/or fixes another

- TensorFlow 2.0: Exceptions seem harder to interpret

TensorFlow as an implementation platform
- Static graph compilation great for verification and TF/Python separation

- However, problems have persisted with respect to:
- Nesting while and cond in combination with gradients and TensorBoard summaries
- Recently, almost every TF upgrade breaks one thing and/or fixes another

- TensorFlow 2.0: Exceptions are harder to interpret

- TensorFlow 2.1: Version upgrades still change/break basic things

User feedback

Reasons for choosing Tensorforce
- No code digging: easy to get started and obtain results
- Modular structure: clean API and extensive configurability
- Full-on TensorFlow: computation graph can be extracted
- Focus on “core RL” performance, in particular reward estimation

Reasons for choosing Tensorforce

Limitations and areas for development
- No code digging: hard to modify/extend beyond what’s supported
- Modular structure: no single script, no SOTA reference implementations
- Full-on TensorFlow: incomprehensible exceptions
- No focus on sophisticated hardware management and distributed execution

- No code digging: easy to get started and obtain results
- Modular structure: clean API and extensive configurability
- Full-on TensorFlow: computation graph can be extracted
- Focus on “core RL” performance, in particular reward estimation

Applications

DeepCrawl: DRL-controlled game AI
(Alessandro Sestini, Università degli Studi di Firenze)

DeepCrawl: DRL-controlled game AI
(Alessandro Sestini, Università degli Studi di Firenze)

RL / Tensorforce takeaways:

- State space with multiple components
- Global and ego-centric views of map
- Categorical and continuous game state values

- Handling of discrete values
- Main motivation for auto-network

- Exploration also for imperfect behavior

- Deployment to C#

Paper: http://www.exag.org/papers/EXAG_2019_paper_1.pdf
GitHub: https://github.com/SestoAle/DeepCrawl

http://www.exag.org/papers/EXAG_2019_paper_1.pdf
https://github.com/SestoAle/DeepCrawl

Flow Control of the 2D Kármán Vortex Street
(Jean Rabault et al., University of Oslo)

Flow Control of the 2D Kármán Vortex Street
(Jean Rabault et al., University of Oslo)

RL / Tensorforce takeaways:

- Costly simulations using FEniCS
- Simple parallelized environment execution
- Speedup almost linear <= 60

- Importance of choosing the right
characteristic timescales
- Agent vs simulation timestep rate
- Horizons and terminal

Papers: https://arxiv.org/abs/1808.07664 https://arxiv.org/abs/1906.10382
GitHub: https://github.com/jerabaul29/Cylinder2DFlowControlDRL

https://arxiv.org/abs/1808.07664
https://arxiv.org/abs/1906.10382
https://github.com/jerabaul29/Cylinder2DFlowControlDRL

Direct shape optimization through DRL
(Jonathan Viquerat et al., MINES ParisTech)

Direct shape optimization through DRL
(Jonathan Viquerat et al., MINES ParisTech)

RL / Tensorforce takeaways:

- Importance of state/action parametrization
- Unambiguous, normalized

- “Degenerate” 1-step RL
- Non-differentiable optimization

- Potential of reward shaping:
- Constraints via additional terms

Paper: https://arxiv.org/abs/1908.09885

https://arxiv.org/abs/1908.09885

Autonomous order dispatching in the semiconductor industry
(KIT Institute of Production Science, Infineon)

Autonomous order dispatching in the semiconductor industry
(KIT Institute of Production Science, Infineon)

RL / Tensorforce takeaways:

- Agent embedded in simulation framework

- Multiple workers controlled by the same RL
agent interacting simultaneously
- Different type of parallelized execution

- Masking of invalid actions

Paper: https://publikationen.bibliothek.kit.edu/1000091435

https://publikationen.bibliothek.kit.edu/1000091435

And more...
- Drones, autonomous driving

- Recommender systems

- (Bitcoin) trading

- Games

And more...
- Drones, autonomous driving

- Recommender systems

- (Bitcoin) trading

- Games

Summary
Tensorforce: “TF Estimators for reinforcement learning”

- Easy-to-use framework for applied DRL

- Fully modular RL library design with extensive configurability

- TensorFlow as only implementation platform

- Vision: enable (non-ML) practitioners to apply DRL in any application

Thanks for your attention!

Questions?

