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Why deep learning?



Successes of deep learning

Object recognition
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Machine translation

ENGLISH I .

The stratosphere extends from about
10km to about 50km in altitude. ‘

IEE!OI“ 2 o

o-I '_'l'l LT c% 10 m—tr" —l

Okm77}X| =t & E L}
‘

REB L. & E 10km Hh5S

50km DEFHICHDEXT .

Google's Multilingual Neural Machlne
Translation System: Enabling Zero-Shot
Translation (Johnson et al., November 2016)
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https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1611.04558

Successes of deep learning

Speech synthesis Image synthesis
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WaveNet: A Generative Model for Raw Audio Large Scale GAN Trammg for ngh Fldelltv Natural
(van den Oord et al., September 2016) Image Synthesis (Brock et al., September 2018)



https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1809.11096

Where deep learning excels... and doesn’t

v Raw high-dimensional input x Complex highly structured input

v’ Pattern recognition & matching x Abstract conceptualization

v’ Weak generalization (interpolation) x Strong generalization (extrapolation)
v’ Strong average performance x Reliable worst-case performance

v Only prediction is important X Precise error bounds matter

v ”Trivial” but hard-to-explain tasks:  x Algorithmic and “artificial” tasks:

v’ Visual processing: image, video x NP-hard problems
v’ Language processing: spoken, text x Strategic planning
v' Multimodal reasoning x Explaining decisions



What is
reinforcement learning?



Three types of machine learning

Supervised learning Unsupervised learning Reinforcement learning
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* Classification * Clustering * Decision making
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* Regression * Representation learning e Dynamic control

source: http://beta.cambridgespark.com/courses/jpm/figures/mod1 SuperUnsuper.png https://cdn-images-1.medium.com/max/1600/1*FIK1JS3vFhQasvuEgLU3Bg.png



http://beta.cambridgespark.com/courses/jpm/figures/mod1_SuperUnsuper.png
https://cdn-images-1.medium.com/max/1600/1*FlK1JS3vFhQasvuEgLU3Bg.png

DeepMind’s AlphaGo (Zero)

“The game of Go has long been viewed as the most challenging of classic games for
artificial intelligence owing to its enormous search space and the difficulty of evaluating
board positions and moves.”
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(176 GPUs) (48 TPUs) (4TPUs) (4 TPUS)

source: https://www.nature.com/articles/nature16961 https://deepmind.com/blog/alphago-zero-learning-scratch/



https://www.nature.com/articles/nature16961
https://deepmind.com/blog/alphago-zero-learning-scratch/

OpenAl Five versus Dota 2

Challenges:

v, gota double kill! | ¥hg B
idrewffirstblood bylkilling Lionel”,

- Long time horizons

- Partially-observed state

- High-dimensional, continuous state/action space
- Dota rules are complex and constantly updated
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source: https://www.dota2.com/play/ https://blog.openai.com/more-on-dota-2/



https://www.dota2.com/play/
https://blog.openai.com/more-on-dota-2/

DeepMind and Google’s data center cooling

“Google just gave control over data center cooling to an Al”
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- Consistent energy reduction for cooling by 40%
- Corresponds to 15% reduction in overall PUE
overhead
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source: https://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/ https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/



https://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

Real-world use cases

Optimize
HG

Process planning

Job shop scheduling
Yield management
Supply chain

Demand forecasting
Warehouse operations
optimization (picking)
Production coordination
Fleet logistics

Product design
Facilities location
Camera Tuning

Search ordering
Agriculture

Network optimization
DDoS attack prevention
Service availability

Control
N

Robotics

Wind Turbine Control
HVAC

Autonomous vehicles
Factory automation
Smart grids

Machine Tuning

Monitor and Maintain
0 %
* Quality control

* Fault detection and
isolation

* Predictive maintenance

* Inventory monitoring
* Supply chain risk
management

e Robotics and manufacturing
* Resource management

* Power systems

 Computer clusters

* Finance

* Web content optimization

* Advertisement and bidding
e Deep learning

source: https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail /60500



https://conferences.oreilly.com/artificial-intelligence/ai-ca-2017/public/schedule/detail/60500

Promising use case: internet of things

BUSINESS/
MANUFACTURING HEALTH CARE RETAIL SECURITY TRANSPORTATION

Real-time analytics of Portable health Inventory tracking, Biometric and Self-parking cars,

supply chains and monitoring, electronic smartphone facial recognition GPS locators,

equipment, Robotic recordkeeping, purchasing, locks, remote performance

machinery pharmaceutical anonymous analytics Sensors tracking
safequards of consumer choices

source: https://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png



https://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png

Reinforcement learning
in theory



The traditional framework

Timesteps: state s;, action a;, reward r; (with discount y)
Decision policy: m:S - A, n(s,a) =P(a|s)

State value: VE(s) = E[X,v" 1, | So = s, 17, ~Tollout ]
State-actionvalue: Q"(s,a) =E[1y+V"(s1) | s =S5, ag =a]

Relation: V®(s) = E[Q"(s,a) |a ~m(s) ]



Two classes of RL algorithms

Q-learning / value iteration Policy gradient methods
Learn Q(s,a) Learn m(s,a)
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Deep RL: optimization in detail

Q-learning / value iteration Policy gradient methods
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Reinforcement learning
In practice



Typical deep RL implementation
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Improvement: replay memory
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Improvement: normalization
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Improvement: optimization
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Improvement: value estimator module
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Improvement: internal state/memory
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Improvement: auxiliary tasks

RL agent

policy

optimizer,

auxiliary tasks:
frame prediction,
etc
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Improvement: hierarchical policies
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Improvement: generative memory

RL agent

policy optimizer

action

environ-

|

ment
memory reward

estimation
generative
world model




World models (Ha & Schmidhuber, 2018)

“Can agents learn inside of their own dreams?”

CarRacing-vO environment VizDoom environment

source: https://worldmodels.github.io/



https://worldmodels.github.io/

Failures of deep
(reinforcement) learning



Failure: overfitting to environment details

Original Breakout Breakout + middle wall Breakout + offset paddle

source: https://www.vicarious.com/2017/08/07/general-game-playing-with-schema-networks/



https://www.vicarious.com/2017/08/07/general-game-playing-with-schema-networks/
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unrealistic simulati

Failure

Model behavior passing the 6000 reward threshold:

top performing
(reward 11,600)

source: http://www.argmin.net/2018/03/20/mujocoloco/


http://www.argmin.net/2018/03/20/mujocoloco/

Failure: problematic reward function
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source: https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1



https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

Failure: randomness

HalfCheetah-vl (TRPO, Different Random Seeds)
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Random Average (5 runs)
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source: https://arxiv.org/abs/1709.06560
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https://arxiv.org/abs/1709.06560

Conclusion



Reinforcement learning: what’s missing?

v Raw high-dimensional input  Complex highly structured input
v’ Pattern recognition & matching e Abstract conceptualization

v' Weak generalization (interpolation)

v’ Strong average performance | Reliable worst-case performance

v Only prediction is important

v "Trivial” but hard-to-explain tasks: ¢ Algorithmic and “artificial” tasks:

v’ Visual processing: image, video * NP-hard problems
* Language processing: spoken, text
v' Multimodal reasoning * Explaining decisions



Reinforcement learning: what’s missing?

v Raw high-dimensional input Complex highly structured input

v’ Pattern recognition & matching Abstract conceptualization

v' Weak generalization (interpolation)

v’ Strong average performance Reliable worst-case performance

v’ Only prediction is important

v’ ”Trivial” but hard-to-explain tasks: Algorithmic and “artificial” tasks:

v’ Visual processing: image, video * NP-hard problems
e Language processing: spoken, text
v" Multimodal reasoning * Explaining decisions

| Ease of application: plug-and-play reinforcement learning
—p Tensorforce: A TensorFlow library for applied reinforcement learning



Thanks for your attention!

Questions?



